D. 0. Edwards, S. Mukherjee, and M. S. Pettersen
Department of Physics, The Ohio State University, Columbus, Ohio 43210
Mobile interacting quantum-mechanical kinks of very low mass explain the roton contribution to the growth resistance and the thermal phonon transmission coefficient of the rough surface of 4He crystals.
PACS numbers: 67.40.Pm, 61.50.Cj, 68.45.Kg, 68.45.Nj
This work was supported by U.S. National Science Foundation, Low Temperature Physics Program, Grants No. DMR 8403441 and No. 8905385.
We thank S. Balibar, C. Ebner, C. Jayaprakash, and W. F. Saam for useful discussions.
2. D. S. Fisher and J. D. Weeks, Phys. Rev. Lett. 50, 1077(1983); E. Fradkin, Phys. Rev. B 28, 5338 (1983).
3. A. M. Kosevich and Yu. A. Kosevich, Fiz. Nizk. Temp. 7,809 (1981) [Sov. J. Low Temp. Phys. 7, 394 (1981)].
4. A. F. Andreev and V. G. Knizhnik, Zh. Eksp. Teor. Fiz. 83, 416 (1982) [Sov. Phys. JETP 56, 226 (1982)].
5. R. M. Bowley and D. 0. Edwards, J. Phys. (Paris) 44, 723(1983).
6. R. J. Donnelly and P. Roberts, J. Low Temp. Phys. 27, 687(1977); J. S. Brooks and R. J. Donnelly, J. Phys. Chem. Ref. Data 6, 51 (1977).
7. K. 0. Keshishev, A. Ya. Parshin, and A. B. Babkin, Zh. Eksp. Teor. Fiz. 80, 716 (1981) [Sov. Phys. JETP 53, 362(1981)].
8. J. Bodensohn, K. Nicolai, and P. Leiderer, Z. Phys. B 64, 55 (1986).
9. B. Castaing, S. Balibar, and C. Laroche, J. Phys. (Paris)41, 897 (1980).
1O. B. Castaing, J. Phys. (Paris), Lett. 45, L233 (1984).
11. S. Mukherjee and D. 0. Edwards, Jpn. J. Appl. Phys. 26, A1 13 (1987). The attempt to calculate the roton growth resistance in this paper is incorrect.
12. M. J. Graf, R. M. Bowley, and H. J. Maris, Phys. Rev. Lett. 53,1176 (1984).
13. M. J. Graf and H. J. Maris, Phys. Rev. B 35, 3142 (1987).
14. Because of the inertia of the superfluid, kinks which are reflected at a corner of an island or pit probably change sign.
15. L. Peuch and B. Castaing, J. Phys. (Paris), Lett. 43, L601(1982).
16. The kink entropy is small compared with the temperature dependence of the surface tension d(alpha)/dt, measured by F. Gallet, P. E. Wolf, and S. Balibar [Phys. Rev. Lett. 52, 2253(1984)]. Most of d(alpha)/dt seems due to the change in mu along the melting curve. A negative adsorption (partial(alpha)partial(T))_sub_T=(1/V_sub_C-1/v_sub_L)*delta where delta is approx. 1 Angstrom, accounts for d(alpha)/dt in both hcp and bcc.
17. P. E. Wolf, D. 0. Edwards, and S. Balibar, J. Low Temp. Phys. 51, 489 (1983).
18. L. Puech, B. Hebral, D. Thoulouze, and B. Castaing, J. Phys. (Paris), Lett. 43, L809 (1982).
19. H. J. Maris and T. E. Huber, J. Low Temp. Phys. 48, 99(1982).
20. P. E. Wolf, F. Gallet, S. Balibar, E. Rolley, and P. Nozieres, J. Phys. (Paris) 46, 1987 (1985); F. Gallet, S. Balibar, and E. Rolley, J. Phys. (Paris) 48, 369 (1987).